Asymptotics of a Sequence of Witt Vectors

Jonathan Borwein* and Shituo Lou ${ }^{\dagger}$
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H $3 J 5$
Communicated by Paul Nevai

Received December 14, 1990; revised March 13, 1991

Abstract

We provide asymptotic and order information about the Witt vectors and integers d_{n} appearing in

$$
\prod_{n \geqslant 1} \frac{1}{1+d_{n}\left(t^{n} / n!\right)}=(1-t) e^{t}
$$

$\widehat{C}^{\prime} 1992$ Academic Press, Inc.

1. Introduction

Let A be a commutive ring and let $W(A)$ be the ring of Witt vectors over the ring A. Let $A(A)$ be the free λ-ring. Then in [1] it is shown that

$$
\left(q_{n}\right)_{n \geqslant 1} \mid \rightarrow \prod_{n \geqslant 1}\left(1-q_{n} t^{n}\right)^{-1}
$$

defines an isomorphism between $W(A)$ and $A(A)$.
Denote

$$
\prod_{n \geqslant 1} \frac{1}{1-q_{n} t^{n}}=\sum_{n \geqslant 0} h_{n} t^{n}
$$

The q_{n} correspond, via the characteristic map, to representations of the nth symmetric group. The character table of these representations would give formulae expressing the components of a Witt vector as a function of its "ghost components" [2, p. 352].

Denote

$$
\begin{equation*}
\prod_{n \geqslant 1} \frac{1}{1+d_{n}\left(t^{n} / n!\right)}=(1-t) e^{t} \tag{*}
\end{equation*}
$$

[^0]The sequence $\left\{d_{n}\right\}_{n>1}$ gives the dimensions of these representations. In this paper we prove the following analytic result concerning the behaviour of $\left\{d_{n}\right\}$.

Theorem 1. For $n=2,3, \ldots$

$$
\begin{array}{r}
n \text { odd } \rightarrow d_{n} \leqslant(n-1)! \\
\text { n prime } \rightarrow d_{n}=(n-1)! \tag{1.1}\\
n \text { even } \rightarrow d_{n} \geqslant(n-1)!
\end{array}
$$

and

$$
1-\frac{1}{n} \leqslant \frac{d_{n}}{(n-1)!} \leqslant 1+\frac{\alpha_{n}}{\sqrt{n}},
$$

where $\alpha_{8}=\alpha_{16}=2$, and otherwise, $\alpha_{n}=1$.
We denote α_{n} by α for short.

2. Proof of (1.1) and (1.2)

On taking logarithms and expanding ($*$), it is easy to see $d_{1}=0$, and for $n>1$

$$
\begin{equation*}
d_{n}=(n-1)!+\sum_{\substack{k h=n \\ k \neq 1, n}} \frac{(-1)^{h}}{h}\left(\frac{d_{k}}{k!}\right)^{h} n! \tag{2.1}
\end{equation*}
$$

so that $d_{2}=1, d_{3}=2, d_{4}=9, d_{5}=24, d_{6}=130, d_{7}=720$, and $d_{8}=8505$
We note that $-d_{n} / n$! are the coefficients of the Witt vector whose "ghost" is the unit vector $(1,0,0,0, \ldots)$.

We will prove (1.1) and (1.2). Write

$$
n=2^{l_{0}} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}
$$

where p_{i} is a prime for $1 \leqslant i \leqslant k$ and l_{i} is an integer for $0 \leqslant i \leqslant k$. Suppose, inductively, that (1.1) and (1.2) hold for all proper divisors of n, i.e., for each $n^{\prime}=2^{l_{0}} p_{1}^{l_{1}^{\prime}} \cdots p_{k}^{l_{k}^{\prime}}$ with $l_{i}^{\prime} \leqslant l_{i}(0 \leqslant i \leqslant k)$ and $\left(l_{0}, \ldots, l_{k}\right) \neq\left(l_{0}^{\prime}, \ldots, l_{k}^{\prime}\right),(1.1)$ and (1.2) hold (if n is even, the left-hand side of (1.2) will be replaced by $\left.d_{n} /(n-1)!\geqslant 1\right)$.

We will show that (1.1) and (1.2) hold for

$$
n=2^{l_{0}} p_{1}^{l_{1}} \cdots p_{k}^{l_{k}}
$$

We have

$$
d_{n}=(n-1)!+n!\sum^{\prime}
$$

with

$$
\begin{aligned}
& \Sigma^{\prime}:=\sum_{0 \leqslant i_{k} \leqslant l_{k}} \cdots \sum_{\substack{0 \leqslant i_{1} \leqslant l_{1} \\
\left(i_{0}, \ldots, i_{k}\right) \neq(0, \ldots 0)}} \sum_{0 \leqslant i_{0} \leqslant l_{0}-1}\left\{\frac{1}{2^{{L_{0}-i_{0}}^{i_{0}} p_{1}^{l_{1}-i_{1}} \cdots p_{k}^{h_{k}-i_{k}}}}\right.
\end{aligned}
$$

$$
\begin{align*}
& -\sum_{\substack{\left.0 \leqslant i_{k} \leqslant l_{k} \\
i_{0}, \ldots, i_{k}\right\} \neq\left(l_{0}, \ldots i_{k}\right)}} \cdots \sum_{\substack{0 \leqslant i_{1} \leqslant l_{1}}} \frac{1}{p_{1}^{i_{1}-i_{1}} \cdots p_{k}^{I_{k}-i_{k}}}\left(\frac{d_{2^{i_{0}} p_{1}^{1} \cdots p_{k}^{i_{k}}}}{\left(2^{i_{0}} p_{1}^{i_{1}} \cdots p_{k}^{i_{k}}\right)!}\right)^{p_{1}^{p_{1}-i_{1} \cdots p_{k}^{k_{k}-i_{k}}}} \tag{2.2}
\end{align*}
$$

We now show that

$$
\begin{equation*}
l_{0} \geqslant 1 \Rightarrow \Sigma^{\prime} \geqslant 0 \tag{2.3}
\end{equation*}
$$

For each $\left\{i_{1}, \ldots, i_{k}\right\}$ let k_{0} denote the largest number j with $l_{j} \neq i_{j}$. Let

$$
\begin{aligned}
& A=p_{1}^{l_{1}-i_{1}} \cdots p_{k_{0}-1}^{i_{0}-1-i_{k_{0}-1}} p_{k_{0}}^{i_{0}-i_{k_{0}}-1} \\
& B=2^{i_{0}-1} p_{1}^{i_{1}} \cdots p_{k_{0}}^{i_{0}} p_{k_{0}+1}^{l_{k_{0}}+1} \cdots p_{k}^{l_{k}}
\end{aligned}
$$

Then $n=2 A p_{k_{0}} B$, with A odd.
It is sufficient to prove that

$$
\begin{equation*}
\frac{1}{2 A}\left(\frac{d_{B p_{k_{0}}}}{\left(B p_{k_{0}}\right)!}\right)^{2 A} \geqslant \frac{1}{A p_{k_{0}}}\left(\frac{d_{2 B}}{(2 B)!}\right)^{A p_{k_{0}}} \tag{2.4}
\end{equation*}
$$

since this will allow us to match off terms in the second sum of (2.3).
If $B=1$: (2.4) becomes

$$
\begin{equation*}
\frac{1}{2 A}\left(\frac{d_{p_{k_{0}}}}{\left(p_{k_{0}}\right)!}\right)^{2 A} \geqslant \frac{1}{A p_{k_{0}}}\left(\frac{d_{2}}{2}\right)^{A p_{k_{0}}} \tag{2.5}
\end{equation*}
$$

Since $d_{p_{k_{0}}}=\left(p_{k_{0}}-1\right)!, d_{2}=1$, then (2.5) becomes

$$
\begin{equation*}
\frac{1}{2}\left(\frac{1}{p_{k_{0}}}\right)^{2 A} \geqslant \frac{1}{p_{k_{0}}}\left(\frac{1}{2}\right)^{A p k_{0}} \tag{2.6}
\end{equation*}
$$

When $p_{k_{0}} \geqslant 5$, then $\left(1 / p_{k_{0}}\right)^{2} \geqslant(1 / 2)^{p_{k_{0}}}$, and (2.6) holds.

When $p_{k_{0}}=3$, we go back to (2.2). We have $p_{k_{0}}=3$ and $B=1 \Rightarrow n=2(3)^{t}$ (i.e., $l_{0}=1, l_{1}=l, k=1$) and (2.2) is

$$
\begin{align*}
\sum^{\prime} & =\sum_{0 \leqslant i \leqslant l-1} \frac{1}{2(3)^{i}}\left(\frac{d_{3^{l-1}}}{3^{l-i}!}\right)^{2\left(3 l^{\prime}\right.}-\sum_{1 \leqslant i \leqslant i} \frac{1}{3^{i}}\left(\frac{d_{2\left(33^{\prime-i}\right.}}{\left(2(3)^{l-i}\right)!}\right)^{3 l^{\prime}} \\
& =\sum_{0 \leqslant i \leqslant l-1}\left(\frac{1}{2\left(3^{i}\right)}\left(\frac{d_{3^{l-3}}}{3^{l-i}!}\right)^{2\left(3^{\prime}\right)}-\frac{1}{3^{\prime+i}}\left(\frac{d_{2\left(3^{\prime-1-1}\right.}}{2\left(3^{l-i-i}\right)!}\right)^{3^{\prime-1}}\right) \\
& :=\sum_{0 \leqslant i \leqslant l-1} D_{i} . \tag{2,7}
\end{align*}
$$

We will prove that

$$
\begin{equation*}
D_{i} \geqslant 0, \quad 0 \leqslant i \leqslant l-3 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{l-2}+D_{l-1} \geqslant 0 \tag{129}
\end{equation*}
$$

When $l=1$, the right-hand side of (2.7) is $\frac{1}{18}-\frac{1}{24}>0$. Inductively, we suppose (2.8) is true for l and we will show that (2.8) holds for $i+1$. We have

$$
\begin{align*}
D_{i} \geqslant & \frac{1}{2\left(3^{i}\right)}\left(\frac{1}{3^{l-i}}\right)^{2\left(3^{\prime}\right)}\left(1-\frac{1}{3^{l-i}}\right)^{2\left(3^{\prime}\right)} \\
& -\frac{1}{3^{i+1}}\left(\frac{1}{2\left(3^{l-i-1}\right)}\right)^{3^{l+1}}\left(1+\frac{1}{\sqrt{2\left(3^{I-i-i}\right)}}\right)^{3^{\prime+1}} \\
= & \left(\frac{1}{3}\right)^{2\left(3^{\prime}\right)(l-i l+i}\left[\frac{1}{2}\left(1-\frac{1}{3^{l-i}}\right)^{2\left(3^{\prime}\right)}-\left(\frac{1}{2}\right)^{3^{\prime+1}}\left(\frac{1}{3}\right)^{3^{\prime(l-i-3)+1}}\right. \\
& \left.\times\left(1+\frac{1}{\sqrt{2\left(3^{l-i-1}\right)}}\right)^{3^{i+1}}\right] \tag{210}
\end{align*}
$$

When $0 \leqslant i \leqslant l-3$, we have that

$$
\begin{align*}
& \frac{1}{2}\left(1-\frac{1}{3^{l-i}}\right)^{2\left(3^{\prime}\right)}-\left(\frac{1}{2}\right)^{3^{\prime+1}}\left(\frac{1}{3}\right)^{3^{\prime \prime}(-i-3)+1}\left(1+\frac{1}{\sqrt{2\left(3^{l-i-1}\right)}}\right)^{3^{\prime-1}} \\
& \quad \geqslant \frac{1}{3}\left[\left(1-\frac{1}{27}\right)^{2\left(3^{\prime}\right)}-\left(\frac{1}{8}\right)^{3^{\prime}}\left(1+\frac{1}{\sqrt{18}}\right)^{3^{\prime+i}}\right] \tag{2.11}
\end{align*}
$$

Since

$$
\left(1-\frac{1}{27}\right)^{2}>\frac{1}{8}\left(1+\frac{1}{\sqrt{18}}\right)^{3}
$$

the right-hand side of (2.11) is positive. Thus (2.8) holds for $0 \leqslant i \leqslant l-3$. Moreover,

$$
\begin{aligned}
D_{l-2}+D_{l-1}= & \frac{1}{2\left(3^{l-2}\right)}\left(\frac{8}{81}\right)^{2\left(3^{l-2}\right)}-\frac{1}{3^{l-1}}\left(\frac{13}{72}\right)^{3^{l-1}} \\
& +\frac{1}{2\left(3^{l-1}\right)}\left(\frac{1}{3}\right)^{2\left(3^{l-1}\right)}-\frac{1}{3^{l}}\left(\frac{1}{2}\right)^{3^{l}}
\end{aligned}
$$

Since

$$
-\left(\frac{1}{8}\right)^{3}+\left(\frac{8}{81}\right)^{2}-\left(\frac{13}{72}\right)^{3}>0
$$

we have shown that

$$
D_{l-2}+D_{l-1}>0 .
$$

Thus we have proved that $\Sigma^{\prime} \geqslant 0$ for $B=1$ and any $p_{k_{0}}$. If $B=2$: (2.4) becomes

$$
\begin{equation*}
\frac{1}{2 A}\left(\frac{d_{2 p_{k_{0}}}}{\left(2 p_{k_{0}}\right)!}\right)^{2 A} \geqslant \frac{1}{A p_{k_{0}}}\left(\frac{d_{4}}{4!}\right)^{A p_{k_{0}}} \tag{2.12}
\end{equation*}
$$

and, since $d_{4}=9$, (2.12) becomes

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d_{2 p k_{0}}}{\left(2 p_{k_{0}}\right)!}\right)^{2 A} \geqslant \frac{1}{p_{k_{0}}}\left(\frac{3}{8}\right)^{A p_{k_{0}}} \tag{2.13}
\end{equation*}
$$

For $p_{k_{0}} \geqslant 5$,

$$
\left(\frac{1}{\left(2 p_{k_{0}}\right)}\right)^{2} \geqslant\left(\frac{3}{8}\right)^{p k_{0}} \quad \text { and } \quad \frac{1}{2}>\frac{1}{p_{k_{0}}}
$$

and (2.13) holds because $d_{2 k_{0}} \geqslant\left(2 p_{k_{0}}-1\right)$!.

If $p_{k_{3}}=3$, then $A=3^{\prime}$ and $n=4\left(3^{l}\right)$: thus (2.3) becomes

$$
\begin{align*}
& \Sigma^{\prime}= \sum_{0 \leqslant i \leqslant l-1} \frac{1}{4\left(3^{l}\right)}\left(\frac{d_{3^{l-1}}}{3^{l-i}!}\right)^{4\left(3^{i}\right)}+\sum_{0 \leqslant i \leqslant l} \frac{1}{2\left(3^{i}\right)}\left(\frac{d_{2\left(3^{\prime-i}\right)}}{2\left(3^{l-i}\right)!}\right)^{2\left(3^{\prime}\right)} \\
&-\sum_{1 \leqslant i \leqslant l} \frac{1}{3^{i}}\left(\frac{d_{4\left(3^{l-i}\right)}}{4\left(3^{l-i}\right)!}\right)^{3^{i}} \\
& \geqslant \sum_{0 \leqslant i \leqslant l-2}\left(\frac{1}{4\left(3^{i}\right)}\left(\frac{d_{3^{l-i}}}{3^{l-i}!}\right)^{4\left(3^{3}\right)}+\frac{1}{2\left(3^{i}\right)}\left(\frac{d_{2\left(3^{\prime}-1\right)}}{2\left(3^{l-i}\right)!}\right)^{2\left(3^{\prime} ;\right.}\right. \\
&-\frac{1}{3^{i+1}}\left(\frac{\left.\left.d_{4\left(3^{\prime-i-1}\right)}^{4\left(3^{l-i-i}\right)!}\right)^{3^{\prime+1}}\right)+\frac{1}{2\left(3^{l}\right)}\left(\frac{d_{2}}{2}\right)^{2\left(3^{l}!\right.}-\frac{1}{3^{l}}\left(\frac{d_{4}}{24}\right)^{3^{i}}}{:=}\right. \\
& \sum_{0 \leqslant i \leqslant i-2} D_{i}^{\prime}+D_{l-1}^{\prime} . \tag{2.14}
\end{align*}
$$

We prove (2.14) by using induction yet again. By the induction assumption, we have that

$$
\begin{align*}
D_{i}^{\prime} \geqslant & \frac{1}{4\left(3^{i}\right)}\left(\frac{1}{3^{i-i}}\left(1-\frac{1}{3^{l-i}}\right)\right)^{4\left(3^{\prime} /\right.}+\frac{1}{2\left(3^{i}\right)}\left(\frac{1}{2\left(3^{I-i}\right)}\left(1-\frac{1}{2\left(3^{i-i}\right)}\right)\right)^{\left.23^{\prime}\right)} \\
& -\frac{1}{3^{i+1}}\left(\frac{1}{4\left(3^{l-i-1}\right)}\left(1+\frac{1}{\sqrt{4\left(3^{l-i-1}\right)}}\right)\right)^{3^{i+1}} . \tag{2.15}
\end{align*}
$$

When $0 \leqslant i \leqslant l-2$,

$$
\begin{aligned}
& \left(\frac{1}{2\left(3^{l-i}\right)}\left(1-\frac{1}{2\left(3^{l-i}\right)}\right)\right)^{2}-\left(\frac{1}{4\left(3^{l-i-1}\right)}\left(1+\frac{1}{\sqrt{4\left(3^{l-i-1}\right)}}\right)\right)^{3} \\
& \quad=\frac{1}{3^{2 l-2 i}}\left(\frac{1}{4}\left(1-\frac{1}{2\left(3^{l-i}\right)}\right)^{2}-\frac{1}{64}\left(\frac{1}{3}\right)^{l-i-3}\left(1+\frac{1}{\sqrt{4\left(3^{l-i-1}\right)}}\right)\right) \\
& \quad \geqslant \frac{1}{3^{2 l-2 i}}\left(\frac{1}{4}\left(1-\frac{1}{18}\right)^{2}-\frac{3}{64}\left(1+\frac{1}{\sqrt{12}}\right)^{3}\right)>0
\end{aligned}
$$

Moreover

$$
\frac{1}{2\left(3^{\prime}\right)}\left(\frac{d_{2}}{2}\right)^{2\left(3^{\prime}\right)}-\frac{1}{3^{\prime}}\left(\frac{d_{4}}{24}\right)^{3^{\prime}}>0
$$

Thus we have proved (2.3) holds for $B=2$.
If $B \geqslant 3$: By the induction assumption, if $l_{0} \geqslant 2$, so that B is even, $\vec{u}_{B k_{0}} \geqslant\left(B p_{k_{0}}-1\right)!$, and $d_{2 B} \leqslant(1+\alpha / \sqrt{2 B})(2 B-1)!$ (where $x=1$ unless
$B=4$ or 8 , and $\alpha=2$ when $B=4$ or 8) because $B p_{k_{0}}<n$ and $2 B<n$. Then we have

$$
\frac{1}{2 A}\left(\frac{d_{B p_{k_{0}}}}{\left(B p_{k_{0}}\right)!}\right)^{2 A} \geqslant \frac{1}{2 A}\left(\frac{1}{B p_{k_{0}}}\right)^{2 A}
$$

and

$$
\frac{1}{A p_{k_{0}}}\left(\frac{d_{2 B}}{(2 B)!}\right)^{A p k_{0}} \leqslant \frac{1}{A p_{k_{0}}}\left(\frac{1}{2 B}\left(1+\frac{\alpha}{\sqrt{2 B}}\right)\right)^{A p_{k_{0}}}
$$

If $l_{0}=1$, then B is odd. We have that

$$
\frac{d_{B p_{k_{0}}}}{B p_{k_{0}}!} \geqslant \frac{1}{B p_{k_{0}}}\left(1-\frac{1}{B p_{k_{0}}}\right) .
$$

Now we reduce (2.4) to

$$
\begin{equation*}
\frac{1}{2 A}\left(\frac{1}{B p_{k_{0}}}\left(1-\frac{\sigma}{B p_{k_{0}}}\right)\right)^{2 A} \geqslant \frac{1}{A p_{k_{0}}}\left(\frac{1}{2 B}\left(1+\frac{\alpha}{\sqrt{2 B}}\right)\right)^{A p_{k_{0}}} \tag{2.16}
\end{equation*}
$$

where $\sigma=1$ if $l_{0}=1$ and $\sigma=0$ if $l_{0} \geqslant 2$.
Let

$$
f(p)=\ln \left(\frac{1}{2}\left(\frac{1}{B p}\left(1-\frac{\sigma}{B p}\right)\right)^{2 A} / \frac{1}{p}\left(\frac{1}{2 B}\left(1+\frac{\alpha}{\sqrt{2 B}}\right)\right)^{A p}\right)
$$

We have that

$$
f^{\prime}(p)=\frac{1-2 A}{p}+A \ln \frac{2 B}{1+\alpha / \sqrt{2 B}}+2 A \frac{\sigma}{p(B p-\sigma)}>0
$$

since $A>1$ and $B \geqslant 3$. It follows that $f(p)$ is an increasing function of p. Moreover

$$
f(5)=(1-2 A) \ln 5-\ln 2+5 A \ln \frac{2 B}{1+\alpha / \sqrt{2 B}}-2+A \ln \frac{B}{1-\alpha / \sqrt{5 B}}>0
$$

Also

$$
f(3)=(1-2 A) \ln 3-\ln 2+3 A \ln \frac{2 B}{1+\alpha / \sqrt{2 B}}-2+A \ln \frac{B}{1-\sigma / \sqrt{3 B}}>0
$$

provided $B \geqslant 6$ if $\alpha=2$ and $B \geqslant 4$ if $\alpha=1$. Thus we have that $f(p)>0$ for $p \geqslant 3$ except $B=4, \alpha=2$, and $p=3$. (Note: $\alpha=2$ only for $n=4$ or 8 , i.e., $B=2$ or 4 .)

When $B=4, \alpha=2$, and $p=3$ then $n=8\left(3^{\prime}\right)$. In this case Σ^{\prime} becomes

$$
\begin{align*}
\Sigma^{\prime}= & \sum_{0 \leqslant i \leqslant l-1} \frac{1}{8\left(3^{i}\right)}\left(\frac{d_{3^{l-1}}}{3^{1-i}!}\right)^{8\left(3^{i}\right)}+\sum_{0 \leqslant i \leqslant l} \frac{1}{4\left(3^{i}\right)}\left(\frac{d_{2\left(3^{l-4}\right)}}{2\left(3^{-i}\right)!}\right)^{\left.4: 3^{i}\right)} \\
& +\sum_{0 \leqslant i \leqslant 1} \frac{1}{2\left(3^{i}\right)}\left(\frac{d_{4\left(3^{l-1}\right)}}{4\left(3^{l-i}\right)!}\right)^{2\left(3^{l}\right)}-\sum_{1 \leqslant i \leqslant 1} \frac{1}{3^{!}}\left(\frac{d_{8\left(3^{l-i}\right)}}{8\left(3^{i-i}\right)!}\right)^{3} \tag{2.17}
\end{align*}
$$

Since f or $i \leqslant l-1$,

$$
\begin{align*}
& \left(\frac{d_{4\left(3^{I-l}\right)}}{4\left(3^{l-i}\right)!}\right)^{2\left(3^{\prime}\right)}-\left(\frac{d_{8\left(3^{l-i-1}\right)}}{8\left(3^{l-i-1}\right)!}\right)^{3^{\prime+1}} \\
& \geqslant \\
& \geqslant\left(\frac{1}{4\left(3^{l-i}\right)}\left(1-\frac{1}{4\left(3^{l-i}\right)}\right)\right)^{2\left(3^{t}\right)} \\
& \quad-\left(\frac{1}{8\left(3^{I-i-1}\right)}\left(1+\frac{1}{\sqrt{8\left(3^{l-i-1}\right)}}\right) \pi^{\theta^{1+1}}\right.
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{16}\left(1-\frac{1}{4\left(3^{l-i}\right)}\right)^{2}-\frac{1}{512}\left(\frac{1}{3}\right)^{l-i-3}\left(1+\frac{1}{\sqrt{8\left(3^{1-i-1}\right)}}\right)^{3}>0 \tag{2.19}
\end{equation*}
$$

Thus the right-hand side of (2.17) is positive. We have proved (2.3) for $B \geqslant 3$. This completes the proof of (1.1).

We now prove (1.2). If n is odd, then we have

$$
\frac{d_{n}}{(n-1)!} \leqslant 1
$$

We will prove that

$$
\begin{equation*}
\sum_{\substack{k h=n \\ k \neq 1, n}} \frac{1}{h}\left(\frac{d_{k}}{k!}\right)^{h} n \leqslant \frac{1}{n} \tag{2.20}
\end{equation*}
$$

when n is odd. Since $k h=n$, all of h and k we discuss are odd. Using induction again, we suppose that

$$
\begin{equation*}
\left|d_{k}-(k-1)!\right| \leqslant \frac{1}{k} \tag{2.21}
\end{equation*}
$$

for $k<n$ and k odd. Thus

$$
\begin{align*}
\sum_{\substack{k h=n \\
k \neq 1, n}} \frac{1}{h}\left(\frac{d_{k}}{k!}\right)^{h} n^{2} & \leqslant \sum_{\substack{k h=n \\
k \neq 1, n}} \frac{1}{h}\left(\frac{1}{k}\right)^{h} n^{2} \\
& =\sum_{\substack{k h=n \\
k \neq 1, n}} \frac{h}{k^{h-2}} . \tag{2.22}
\end{align*}
$$

We will prove that

$$
\begin{equation*}
\frac{h}{k^{h-2}} \leqslant \frac{1}{k^{2}} \tag{2.23}
\end{equation*}
$$

for $h \geqslant 5$ and $k \geqslant 5$.
Since

$$
\left(\frac{\ln h}{h-4}\right)^{\prime}=\frac{1-4 / h-\ln h}{(h-4)^{2}}<0 \quad \text { if } \quad h \geqslant 5
$$

(here ' denotes derivative), then

$$
\frac{\ln h}{h-4} \leqslant \ln 5
$$

Thus

$$
h \leqslant k^{h-4} \quad \text { if } \quad k \geqslant 5 .
$$

If $h=3$,

$$
\sum_{\substack{k h=n \\ k \neq 1, n \\ h=3}} \frac{h}{k^{h-2}}=\frac{3}{(n / 3)}=\frac{9}{n}
$$

If $k=3$,

$$
\sum_{\substack{k h=n \\ k \neq 1, n \\ k=3}} \frac{h}{k^{h-2}}=\frac{3 n}{3^{n / 3}} .
$$

Then

$$
\sum_{\substack{k h=n \\ k \neq 1, n}} \frac{h}{k^{h-2}} \leqslant \sum_{i=5}^{\infty} \frac{1}{i^{2}}+\frac{9}{n}+\frac{3 n}{3^{n / 3}} \leqslant 1, \quad \text { if } \quad n \geqslant 16
$$

If $n \leqslant 15$, since $k \mid n$ and $h \mid n$, then $3 \mid n$ if $k=3$ or $h=3$. Thus $n=9$ or 15 . For those two values of n, it is easy to check that the right-hand side of $(2.22) \leqslant 1$.

If n is even, then we will prove that (1.2) holds by induction. Supposing (1.2) true for any integer less than n, we will prove (1.2) true for n. Since $d_{n} /(n-1)!\geqslant 1$, it is sufficient to prove that

$$
\begin{equation*}
\left|\sum_{\substack{k h=n \\ k \neq 1 . n}} \frac{(-1)^{h}}{h}\left(\frac{d_{k}}{k!}\right)^{h} n\right| \leqslant \frac{1}{\sqrt{n}} \tag{2.24}
\end{equation*}
$$

Write

$$
f(k, h)=\frac{1}{h}\left(\frac{d_{k}}{k!}\right)^{h}(h k)^{3: 2}
$$

Then (2.24) is

$$
\begin{equation*}
\sum_{\substack{k h=n \\ k \neq 1 . n \\ h \text { even }}} f(k, h)-\sum_{\substack{k h=n \\ k \neq 1 . n \\ h \neq 1 . n}} f(k, h) \leqslant 1 \tag{2.25}
\end{equation*}
$$

To begin with we prove that for $n \geqslant 6$ and h even,

$$
\begin{equation*}
f(k, h) \leqslant 1 / k^{2} \tag{2.26}
\end{equation*}
$$

First, we have that

$$
f(2, h)=\left(\frac{1}{2}\right)^{h} 2^{3 / 2} h^{1: 2}<\frac{1}{4}
$$

for $h \geqslant 5$.
For $k=3$, we have that

$$
f(3, h)=3^{-h+3 \cdot 2 h^{1.2}}<\frac{1}{9}
$$

Moreover,

$$
f(4, h)=\left(\frac{3}{8}\right)^{h} 8 h^{1 / 2}<\frac{1}{16}
$$

For $k \geqslant 5$ and $h \geqslant 6$, we will prove

$$
\begin{equation*}
f(k, h) \leqslant 1 / k^{2} \tag{2.27}
\end{equation*}
$$

as follows.

By the previous induction assumption in (1.2), it is sufficient to show that

$$
\begin{equation*}
\frac{1}{h}\left(\frac{(k-1)!+(k-1)!\alpha / \sqrt{k}}{k!}\right)^{h}(h k)^{3 / 2} \leqslant \frac{1}{k^{2}} \tag{2.28}
\end{equation*}
$$

We have that the left-hand side of (2.28) equals

$$
\frac{h^{1 / 2}(\sqrt{k}+\alpha)^{h}}{k^{3(h-1)^{\prime 2}}}
$$

First we will show that, for $k \geqslant 5$ and $h \geqslant 8$,

$$
\begin{equation*}
\frac{h^{1 / 2}(\sqrt{k}+\alpha)^{h}}{k^{3(h-1) / 2}} \leqslant \frac{1}{k^{2}} \tag{2.29}
\end{equation*}
$$

Now (2.29) is true if and only if

$$
\begin{equation*}
\frac{(\ln h) / 2+h \ln (\sqrt{k}+\alpha)}{(3 / 2) h-(7 / 2)}-\ln k \leqslant 0 . \tag{2.30}
\end{equation*}
$$

The left-hand side of (2.30) is a decreasing function of h for $h \geqslant 6$. Thus it is less than

$$
\begin{equation*}
\frac{\ln 6+12 \ln \sqrt{k}+\alpha}{11}-\ln k \tag{2.31}
\end{equation*}
$$

Now (2.31) is a decreasing function of k and it is negative for $k=5$ when $\alpha=1$ and $k=6$ when $\alpha=2$. So (2.29) holds for $k \geqslant 5, h \geqslant 6$, after checking directly that it holds for $f(8,6), f(16,6)$. Thus (2.9) holds for $k \geqslant 5$.

Now we have that

$$
\begin{equation*}
\sum_{\substack{k h=n \\ k \neq 1, n \\ h \neq v e n}} f(k, h) \leqslant \sum_{i=2}^{\infty} \frac{1}{i^{2}}+f\left(\frac{n}{2}, 2\right)+f\left(\frac{n}{4}, 4\right) \tag{2.32}
\end{equation*}
$$

Finally, we discuss the last two terms on the right-hand side of (2.32). By the inductive hypothesis,

$$
f\left(\frac{n}{2}, 2\right) \leqslant \frac{2^{1 / 2}(\sqrt{n / 2}+\alpha)^{2}}{(n / 2)^{3 / 2}}
$$

Since $f(n / 2,2)$ is a decreasing function of n and $f(35,2) \leqslant 0.32082(\alpha=1$ if $n \neq 8$ or 16) it follows that

$$
\begin{align*}
& f(n / 2,2) \leqslant 0.32082 \quad \text { for } n \geqslant 72 . \tag{2.35}\\
& f\left(\frac{n}{4}, 4\right)=\frac{2(\sqrt{n / 4}+1)^{4}}{(n / 4)^{4.5}}<0.003393 \quad \text { for } \quad n \geqslant 72 . \tag{2.34}
\end{align*}
$$

Thus the right-hand side of $(2.13)<0.645+0.32082+0.003393<1$ for $n \geqslant 64$. We have shown that (1.2) holds provided we check it does for $n \leqslant 63$.

This is true except with $\alpha=1$ except for $n=8$ and 16 and $\left[d_{8} /(7!)=\right.$ $27 / 16$ and $\left.d_{16} /(15!)=2955 / 2048\right]$ and so (1.1), (1.2) hold.

In particular

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{(n-1)!}=1 .
$$

3. Two Examples

We have

$$
\begin{aligned}
d_{100} / 99! & =\frac{1,437,875,310,019,956,682,521,937,269,338,988,093}{1,407,374,883,553,280,000,000,000,000,000,000,000} \\
& =1.02167 \ldots
\end{aligned}
$$

As the asymptotic ensures this quantity is less than 1.1 (but it is larger thari 1.01).

Similarly,

$$
\begin{aligned}
d_{99} / 98! & =\frac{23,433,924,589,424,318,014,557,665,728}{23,454,932,070,382,151,157,711,285,129} \\
& =0.999104 \ldots
\end{aligned}
$$

Acknowledgment

We thank Dr. C. Reutenauer (see also [4]) for bringing this question to our attention.

References

1. P. Cartier, Groupes formels associés aux anneaux de Witt, C.R. Acad. Sci. Paris 265 (1967), 49-52.
2. S. Lang, Algebra, 2nd ed., p. 352. Addison-Wesley, Reading, MA. 1984
3. G. Metropolis and G.-C. Rota, Witt vectors and the algebra of necklaces, Adv. in Math. 50 (1983), 95-125.
4. C. Reutenauer, Sur des fonctions symétriques reliés aux vecteurs de Witt, to appear.

[^0]: * Research supported in part by NSERC.
 ${ }^{\dagger}$ Research completed while the second author was a Killam Fellow at Dalhousie University.

