Asymptotics of a Sequence of Witt Vectors

JONATHAN BORWEIN* AND SHITUO LOU[†]

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

Communicated by Paul Nevai

Received December 14, 1990; revised March 13, 1991

We provide asymptotic and order information about the Witt vectors and integers d_n appearing in

$$\prod_{n \ge 1} \frac{1}{1 + d_n(t^n/n!)} = (1 - t) e^t.$$

© 1992 Academic Press, Inc.

1. Introduction

Let A be a commutive ring and let W(A) be the ring of Witt vectors over the ring A. Let A(A) be the free λ -ring. Then in [1] it is shown that

$$(q_n)_{n\geqslant 1}|\to \prod_{n\geqslant 1} (1-q_nt^n)^{-1}$$

defines an isomorphism between W(A) and $\Lambda(A)$.

Denote

$$\prod_{n\geq 1} \frac{1}{1-q_n t^n} = \sum_{n\geq 0} h_n t^n.$$

The q_n correspond, via the characteristic map, to representations of the *n*th symmetric group. The character table of these representations would give formulae expressing the components of a Witt vector as a function of its "ghost components" [2, p. 352].

Denote

$$\prod_{n \ge 1} \frac{1}{1 + d_n(t^n/n!)} = (1 - t) e^t.$$
 (*)

- * Research supported in part by NSERC.
- †Research completed while the second author was a Killam Fellow at Dalhousie University.

The sequence $\{d_n\}_{n>1}$ gives the dimensions of these representations. In this paper we prove the following analytic result concerning the behaviour of $\{d_n\}$.

THEOREM 1. For n = 2, 3, ...

$$n \text{ odd} \to d_n \leq (n-1)!$$

$$n \text{ prime} \to d_n = (n-1)!$$

$$n \text{ even} \to d_n \geq (n-1)!$$
(1.1)

and

$$1 - \frac{1}{n} \le \frac{d_n}{(n-1)!} \le 1 + \frac{\alpha_n}{\sqrt{n}},\tag{1.2}$$

where $\alpha_8 = \alpha_{16} = 2$, and otherwise, $\alpha_n = 1$.

We denote α_n by α for short.

2. Proof of (1.1) and (1.2)

On taking logarithms and expanding (*), it is easy to see $d_1 = 0$, and for n > 1

$$d_n = (n-1)! + \sum_{\substack{kh = n \\ k \neq 1, n}} \frac{(-1)^h}{h} \left(\frac{d_k}{k!}\right)^h n!, \tag{2.1}$$

so that $d_2 = 1$, $d_3 = 2$, $d_4 = 9$, $d_5 = 24$, $d_6 = 130$, $d_7 = 720$, and $d_8 = 8505$.

We note that $-d_n/n!$ are the coefficients of the Witt vector whose "ghost" is the unit vector (1, 0, 0, 0, ...).

We will prove (1.1) and (1.2). Write

$$n = 2^{l_0} p_1^{l_1} \cdots p_k^{l_k}$$

where p_i is a prime for $1 \le i \le k$ and l_i is an integer for $0 \le i \le k$. Suppose, inductively, that (1.1) and (1.2) hold for all proper divisors of n, i.e., for each $n' = 2^{l_0} p_1^{l_1} \cdots p_k^{l_k}$ with $l_i' \le l_i$ ($0 \le i \le k$) and ($l_0, ..., l_k$) \ne ($l'_0, ..., l'_k$), (1.1) and (1.2) hold (if n is even, the left-hand side of (1.2) will be replaced by $d_n/(n-1)! \ge 1$).

We will show that (1.1) and (1.2) hold for

$$n=2^{l_0}p_1^{l_1}\cdots p_k^{l_k}.$$

We have

$$d_n = (n-1)! + n! \sum_{i=1}^{n} d_i$$

with

$$\sum' := \sum_{\substack{0 \leqslant i_k \leqslant l_k \\ (i_0, \dots, i_k) \neq (0, \dots, 0)}} \sum_{\substack{0 \leqslant i_1 \leqslant l_1 \\ (i_0, \dots, i_k) \neq (0, \dots, 0)}} \left\{ \frac{1}{2^{l_0 - i_0} p_1^{l_1 - i_1} \cdots p_k^{l_k - i_k}} \right. \\
\times \left(\frac{d_2^{i_0} p_1^{i_1} \cdots p_k^{i_k}}{(2^{l_0} p_1^{i_1} \cdots p_k^{i_k})!} \right)^{2^{l_0 - i_0} p_1^{l_1 - i_1} \cdots p_k^{l_k - i_k}} \right\} \\
- \sum_{\substack{0 \leqslant i_k \leqslant l_k \\ (i_0, \dots, i_k) \neq (l_0, \dots, l_k)}} \cdots \sum_{\substack{0 \leqslant i_1 \leqslant l_1 \\ (i_0, \dots, i_k) \neq (l_0, \dots, l_k)}} \frac{1}{p_1^{l_1 - i_1} \cdots p_k^{l_k - i_k}} \left(\frac{d_2^{i_0} p_1^{i_1} \cdots p_k^{i_k}}{(2^{l_0} p_1^{i_1} \cdots p_k^{i_k})!} \right)^{p_1^{l_1 - i_1} \cdots p_k^{l_k - i_k}} \right. (2.2)$$

We now show that

$$l_0 \geqslant 1 \Rightarrow \sum_{i=1}^{n} \geqslant 0. \tag{2.3}$$

For each $\{i_1, ..., i_k\}$ let k_0 denote the largest number j with $l_j \neq i_j$. Let

$$A = p_1^{l_1 - i_1} \cdots p_{k_0 - 1}^{l_{k_0 - 1} - i_{k_0 - 1}} p_{k_0}^{l_{k_0} - i_{k_0} - 1},$$

$$B = 2^{l_0 - 1} p_1^{i_1} \cdots p_{k_0}^{i_{k_0}} p_{k_0 + 1}^{l_{k_0 + 1}} \cdots p_k^{l_k}.$$

Then $n = 2Ap_{k_0}B$, with A odd.

It is sufficient to prove that

$$\frac{1}{2A} \left(\frac{d_{Bp_{k_0}}}{(Bp_{k_0})!} \right)^{2A} \geqslant \frac{1}{Ap_{k_0}} \left(\frac{d_{2B}}{(2B)!} \right)^{Ap_{k_0}} \tag{2.4}$$

since this will allow us to match off terms in the second sum of (2.3).

If B = 1: (2.4) becomes

$$\frac{1}{2A} \left(\frac{d_{p_{k_0}}}{(p_{k_0})!} \right)^{2A} \geqslant \frac{1}{Ap_{k_0}} \left(\frac{d_2}{2} \right)^{Ap_{k_0}}. \tag{2.5}$$

Since $d_{p_{k_0}} = (p_{k_0} - 1)!$, $d_2 = 1$, then (2.5) becomes

$$\frac{1}{2} \left(\frac{1}{p_{k_0}} \right)^{2A} \geqslant \frac{1}{p_{k_0}} \left(\frac{1}{2} \right)^{Ap_{k_0}}.$$
 (2.6)

When $p_{k_0} \ge 5$, then $(1/p_{k_0})^2 \ge (1/2)^{p_{k_0}}$, and (2.6) holds.

When $p_{k_0} = 3$, we go back to (2.2). We have $p_{k_0} = 3$ and $B = 1 \Rightarrow n = 2(3)^l$ (i.e., $l_0 = 1$, $l_1 = l$, k = 1) and (2.2) is

$$\sum' = \sum_{0 \le i \le l-1} \frac{1}{2(3)^{i}} \left(\frac{d_{3^{l-i}}}{3^{l-i}!} \right)^{2(3)^{i}} - \sum_{1 \le i \le l} \frac{1}{3^{i}} \left(\frac{d_{2(3)^{l-i}}}{(2(3)^{l-i})!} \right)^{3^{i}}$$

$$= \sum_{0 \le i \le l-1} \left(\frac{1}{2(3^{i})} \left(\frac{d_{3^{l-i}}}{3^{l-i}!} \right)^{2(3^{i})} - \frac{1}{3^{i+1}} \left(\frac{d_{2(3^{l-i-1})!}}{2(3^{l-i-1})!} \right)^{3^{i-1}} \right)$$

$$:= \sum_{0 \le i \le l-1} D_{i}. \tag{2.7}$$

We will prove that

$$D_i \geqslant 0, \qquad 0 \leqslant i \leqslant l - 3 \tag{2.8}$$

and

$$D_{t-2} + D_{t-1} \geqslant 0. {(2.9)}$$

When l=1, the right-hand side of (2.7) is $\frac{1}{18} - \frac{1}{24} > 0$. Inductively, we suppose (2.8) is true for l and we will show that (2.8) holds for l+1. We have

$$D_{i} \geqslant \frac{1}{2(3^{i})} \left(\frac{1}{3^{l-i}}\right)^{2(3^{i})} \left(1 - \frac{1}{3^{l-i}}\right)^{2(3^{i})}$$

$$-\frac{1}{3^{i+1}} \left(\frac{1}{2(3^{l-i-1})}\right)^{3^{i+1}} \left(1 + \frac{1}{\sqrt{2(3^{l-i-1})}}\right)^{3^{i+1}}$$

$$= \left(\frac{1}{3}\right)^{2(3^{i})(l-i)+i} \left[\frac{1}{2}\left(1 - \frac{1}{3^{l-i}}\right)^{2(3^{i})} - \left(\frac{1}{2}\right)^{3^{i+1}} \left(\frac{1}{3}\right)^{3^{i}(l-i-3)+1}$$

$$\times \left(1 + \frac{1}{\sqrt{2(3^{l-i-1})}}\right)^{3^{i+1}}\right]. \tag{2.10}$$

When $0 \le i \le l-3$, we have that

$$\frac{1}{2} \left(1 - \frac{1}{3^{l-i}} \right)^{2(3^{i})} - \left(\frac{1}{2} \right)^{3^{i+1}} \left(\frac{1}{3} \right)^{3^{i}(l-i-3)+1} \left(1 + \frac{1}{\sqrt{2(3^{l-i-1})}} \right)^{3^{i-1}} \\
\geqslant \frac{1}{3} \left[\left(1 - \frac{1}{27} \right)^{2(3^{i})} - \left(\frac{1}{8} \right)^{3^{i}} \left(1 + \frac{1}{\sqrt{18}} \right)^{3^{i+1}} \right]. \tag{2.11}$$

Since

$$\left(1 - \frac{1}{27}\right)^2 > \frac{1}{8} \left(1 + \frac{1}{\sqrt{18}}\right)^3$$

the right-hand side of (2.11) is positive. Thus (2.8) holds for $0 \le i \le l-3$. Moreover,

$$D_{l-2} + D_{l-1} = \frac{1}{2(3^{l-2})} \left(\frac{8}{81}\right)^{2(3^{l-2})} - \frac{1}{3^{l-1}} \left(\frac{13}{72}\right)^{3^{l-1}} + \frac{1}{2(3^{l-1})} \left(\frac{1}{3}\right)^{2(3^{l-1})} - \frac{1}{3^{l}} \left(\frac{1}{2}\right)^{3^{l}}.$$

Since

$$-\left(\frac{1}{8}\right)^3 + \left(\frac{8}{81}\right)^2 - \left(\frac{13}{72}\right)^3 > 0,$$

we have shown that

$$D_{l-2} + D_{l-1} > 0.$$

Thus we have proved that $\sum' \ge 0$ for B = 1 and any p_{k_0} .

If B = 2: (2.4) becomes

$$\frac{1}{2A} \left(\frac{d_{2p_{k_0}}}{(2p_{k_0})!} \right)^{2A} \geqslant \frac{1}{Ap_{k_0}} \left(\frac{d_4}{4!} \right)^{Ap_{k_0}}$$
 (2.12)

and, since $d_4 = 9$, (2.12) becomes

$$\frac{1}{2} \left(\frac{d_{2p_{k_0}}}{(2p_{k_0})!} \right)^{2A} \geqslant \frac{1}{p_{k_0}} \left(\frac{3}{8} \right)^{Ap_{k_0}}.$$
 (2.13)

For $p_{k_0} \geqslant 5$,

$$\left(\frac{1}{(2p_{k_0})}\right)^2 \ge \left(\frac{3}{8}\right)^{p_{k_0}}$$
 and $\frac{1}{2} > \frac{1}{p_{k_0}}$

and (2.13) holds because $d_{2p_{k_0}} \ge (2p_{k_0} - 1)!$.

If $p_{k_0} = 3$, then $A = 3^l$ and $n = 4(3^l)$; thus (2.3) becomes

$$\sum' = \sum_{0 \leqslant i \leqslant l-1} \frac{1}{4(3^{i})} \left(\frac{d_{3^{l-i}}}{3^{l-i}!} \right)^{4(3^{i})} + \sum_{0 \leqslant i \leqslant l} \frac{1}{2(3^{i})} \left(\frac{d_{2(3^{l-i})}}{2(3^{l-i})!} \right)^{2(3^{i})} \\
- \sum_{1 \leqslant i \leqslant l} \frac{1}{3^{i}} \left(\frac{d_{4(3^{l-i})}}{4(3^{l-i})!} \right)^{3^{i}} \\
\geqslant \sum_{0 \leqslant i \leqslant l-2} \left(\frac{1}{4(3^{i})} \left(\frac{d_{3^{l-i}}}{3^{l-i}!} \right)^{4(3^{i})} + \frac{1}{2(3^{i})} \left(\frac{d_{2(3^{l-i})}}{2(3^{l-i})!} \right)^{2(3^{i})} \\
- \frac{1}{3^{i+1}} \left(\frac{d_{4(3^{l-i-1})}}{4(3^{l-i-1})!} \right)^{3^{i-1}} \right) + \frac{1}{2(3^{i})} \left(\frac{d_{2}}{2} \right)^{2(3^{i})} - \frac{1}{3^{i}} \left(\frac{d_{4}}{24} \right)^{3^{i}} \\
:= \sum_{0 \leqslant i \leqslant l-2} D'_{i} + D'_{l-1}. \tag{2.14}$$

We prove (2.14) by using induction yet again. By the induction assumption, we have that

$$D_{i}' \geqslant \frac{1}{4(3^{i})} \left(\frac{1}{3^{l-i}} \left(1 - \frac{1}{3^{l-i}} \right) \right)^{4(3^{i})} + \frac{1}{2(3^{i})} \left(\frac{1}{2(3^{l-i})} \left(1 - \frac{1}{2(3^{l-i})} \right) \right)^{2(3^{i})} - \frac{1}{3^{i+1}} \left(\frac{1}{4(3^{l-i-1})} \left(1 + \frac{1}{\sqrt{4(3^{l-i-1})}} \right) \right)^{3^{i+1}}.$$
 (2.15)

When $0 \le i \le l - 2$.

$$\left(\frac{1}{2(3^{l-i})}\left(1 - \frac{1}{2(3^{l-i})}\right)\right)^{2} - \left(\frac{1}{4(3^{l-i-1})}\left(1 + \frac{1}{\sqrt{4(3^{l-i-1})}}\right)\right)^{3}$$

$$= \frac{1}{3^{2l-2l}}\left(\frac{1}{4}\left(1 - \frac{1}{2(3^{l-i})}\right)^{2} - \frac{1}{64}\left(\frac{1}{3}\right)^{l-i-3}\left(1 + \frac{1}{\sqrt{4(3^{l-i-1})}}\right)^{3}\right)$$

$$\geqslant \frac{1}{3^{2l-2l}}\left(\frac{1}{4}\left(1 - \frac{1}{18}\right)^{2} - \frac{3}{64}\left(1 + \frac{1}{\sqrt{12}}\right)^{3}\right) > 0.$$

Moreover

$$\frac{1}{2(3')} \left(\frac{d_2}{2}\right)^{2(3')} - \frac{1}{3'} \left(\frac{d_4}{24}\right)^{3'} > 0.$$

Thus we have proved (2.3) holds for B = 2.

If $B \geqslant 3$: By the induction assumption, if $l_0 \geqslant 2$, so that B is even, $d_{Bp_{k_0}} \geqslant (Bp_{k_0} - 1)!$, and $d_{2B} \leqslant (1 + \alpha/\sqrt{2B})(2B - 1)!$ (where $\alpha = 1$ unless

B=4 or 8, and $\alpha=2$ when B=4 or 8) because $Bp_{k_0} < n$ and 2B < n. Then we have

$$\frac{1}{2A} \left(\frac{d_{Bp_{k_0}}}{(Bp_{k_0})!} \right)^{2A} \geqslant \frac{1}{2A} \left(\frac{1}{Bp_{k_0}} \right)^{2A}$$

and

$$\frac{1}{Ap_{k_0}} \bigg(\frac{d_{2B}}{(2B)!} \bigg)^{Ap_{k_0}} \! \leqslant \! \frac{1}{Ap_{k_0}} \bigg(\frac{1}{2B} \bigg(1 + \frac{\alpha}{\sqrt{2B}} \bigg) \bigg)^{Ap_{k_0}} \! .$$

If $l_0 = 1$, then B is odd. We have that

$$\frac{d_{Bp_{k_0}}}{Bp_{k_0}!} \geqslant \frac{1}{Bp_{k_0}} \left(1 - \frac{1}{Bp_{k_0}} \right).$$

Now we reduce (2.4) to

$$\frac{1}{2A} \left(\frac{1}{Bp_{k_0}} \left(1 - \frac{\sigma}{Bp_{k_0}} \right) \right)^{2A} \geqslant \frac{1}{Ap_{k_0}} \left(\frac{1}{2B} \left(1 + \frac{\alpha}{\sqrt{2B}} \right) \right)^{Ap_{k_0}}, \tag{2.16}$$

where $\sigma = 1$ if $l_0 = 1$ and $\sigma = 0$ if $l_0 \ge 2$. Let

$$f(p) = \ln\left(\frac{1}{2}\left(\frac{1}{Bp}\left(1 - \frac{\sigma}{Bp}\right)\right)^{2A} / \frac{1}{p}\left(\frac{1}{2B}\left(1 + \frac{\alpha}{\sqrt{2B}}\right)\right)^{Ap}\right).$$

We have that

$$f'(p) = \frac{1 - 2A}{p} + A \ln \frac{2B}{1 + \alpha/\sqrt{2B}} + 2A \frac{\sigma}{p(Bp - \sigma)} > 0,$$

since A > 1 and $B \ge 3$. It follows that f(p) is an increasing function of p. Moreover

$$f(5) = (1 - 2A) \ln 5 - \ln 2 + 5A \ln \frac{2B}{1 + \alpha/\sqrt{2B}} - 2 + A \ln \frac{B}{1 - \alpha/\sqrt{5B}} > 0.$$

Also

$$f(3) = (1 - 2A) \ln 3 - \ln 2 + 3A \ln \frac{2B}{1 + \alpha/\sqrt{2B}} - 2 + A \ln \frac{B}{1 - \sigma/\sqrt{3B}} > 0$$

provided $B \ge 6$ if $\alpha = 2$ and $B \ge 4$ if $\alpha = 1$. Thus we have that f(p) > 0 for $p \ge 3$ except B = 4, $\alpha = 2$, and p = 3. (Note: $\alpha = 2$ only for n = 4 or 8, i.e., B = 2 or 4.)

When B = 4, $\alpha = 2$, and p = 3 then $n = 8(3^{l})$. In this case \sum' becomes

$$\sum' = \sum_{0 \le i \le l-1} \frac{1}{8(3^{i})} \left(\frac{d_{3^{l-i}}}{3^{l-i}!} \right)^{8(3^{i})} + \sum_{0 \le i \le l} \frac{1}{4(3^{i})} \left(\frac{d_{2(3^{l-i})}}{2(3^{l-i})!} \right)^{4(3^{i})} + \sum_{0 \le i \le l} \frac{1}{2(3^{i})} \left(\frac{d_{4(3^{l-i})}}{4(3^{l-i})!} \right)^{2(3^{i})} - \sum_{1 \le i \le l} \frac{1}{3^{i}} \left(\frac{d_{8(3^{l-i})}}{8(3^{l-i})!} \right)^{3^{i}}.$$
(2.17)

Since f or $i \leq l-1$,

$$\left(\frac{d_{4(3^{l-i})}}{4(3^{l-i})!}\right)^{2(3^{i})} - \left(\frac{d_{8(3^{l-i-1})}}{8(3^{l-i-1})!}\right)^{3^{i+1}}$$

$$\geqslant \left(\frac{1}{4(3^{l-i})}\left(1 - \frac{1}{4(3^{l-i})}\right)\right)^{2(3^{l})}$$

$$- \left(\frac{1}{8(3^{l-i-1})}\left(1 + \frac{1}{\sqrt{8(3^{l-i-1})}}\right)\pi^{\Theta^{i+1}}, \tag{2.18}$$

and

$$\frac{1}{16} \left(1 - \frac{1}{4(3^{l-i})} \right)^2 - \frac{1}{512} \left(\frac{1}{3} \right)^{l-i-3} \left(1 + \frac{1}{\sqrt{8(3^{l-i-1})}} \right)^3 > 0. \quad (2.19)$$

Thus the right-hand side of (2.17) is positive. We have proved (2.3) for $B \ge 3$. This completes the proof of (1.1).

We now prove (1.2). If n is odd, then we have

$$\frac{d_n}{(n-1)!} \leqslant 1.$$

We will prove that

$$\sum_{\substack{kh=n\\k\neq 1}} \frac{1}{n} \left(\frac{d_k}{k!} \right)^h n \leqslant \frac{1}{n}, \tag{2.20}$$

when n is odd. Since kh = n, all of h and k we discuss are odd. Using induction again, we suppose that

$$|d_k - (k-1)!| \le \frac{1}{k},$$
 (2.21)

for k < n and k odd. Thus

$$\sum_{\substack{kh=n\\k\neq 1,n}} \frac{1}{h} \left(\frac{d_k}{k!}\right)^h n^2 \leqslant \sum_{\substack{kh=n\\k\neq 1,n}} \frac{1}{h} \left(\frac{1}{k}\right)^h n^2$$

$$= \sum_{\substack{kh=n\\k\neq 1,n}} \frac{h}{k^{h-2}}.$$
(2.22)

We will prove that

$$\frac{h}{k^{h-2}} \leqslant \frac{1}{k^2} \tag{2.23}$$

for $h \ge 5$ and $k \ge 5$.

Since

$$\left(\frac{\ln h}{h-4}\right)' = \frac{1-4/h-\ln h}{(h-4)^2} < 0$$
 if $h \ge 5$

(here 'denotes derivative), then

$$\frac{\ln h}{h-4} \leqslant \ln 5.$$

Thus

$$h \leqslant k^{h-4}$$
 if $k \geqslant 5$.

If h=3,

$$\sum_{\substack{kh=n\\k\neq 1,n\\h=3\\h=3}} \frac{h}{k^{h-2}} = \frac{3}{(n/3)} = \frac{9}{n}.$$

If k=3,

$$\sum_{\substack{kh=n\\k\neq 1,n\\k=3}} \frac{h}{k^{h-2}} = \frac{3n}{3^{n/3}}.$$

Then

$$\sum_{\substack{kh=n\\k\neq 1}} \frac{h}{k^{h-2}} \le \sum_{i=5}^{\infty} \frac{1}{i^2} + \frac{9}{n} + \frac{3n}{3^{n/3}} \le 1, \quad \text{if} \quad n \ge 16.$$

If $n \le 15$, since k|n and h|n, then 3|n if k = 3 or h = 3. Thus n = 9 or 15. For those two values of n, it is easy to check that the right-hand side of $(2.22) \le 1$.

If *n* is even, then we will prove that (1.2) holds by induction. Supposing (1.2) true for any integer less than *n*, we will prove (1.2) true for *n*. Since $d_n/(n-1)! \ge 1$, it is sufficient to prove that

$$\left|\sum_{\substack{kh=n\\k\neq 1,n}} \frac{(-1)^h}{h} \left(\frac{d_k}{k!}\right)^h n\right| \leqslant \frac{1}{\sqrt{n}}.$$
 (2.24)

Write

$$f(k, h) = \frac{1}{h} \left(\frac{d_k}{k!}\right)^h (hk)^{3/2}.$$

Then (2.24) is

$$\sum_{\substack{kh=n\\k\neq 1,n\\k\neq ven}} f(k,h) - \sum_{\substack{kh=n\\k\neq 1,n\\k\neq dd}} f(k,h) \le 1.$$
 (2.25)

To begin with we prove that for $n \ge 6$ and h even,

$$f(k,h) \leqslant 1/k^2. \tag{2.26}$$

First, we have that

$$f(2, h) = \left(\frac{1}{2}\right)^h 2^{3/2} h^{1/2} < \frac{1}{4}$$

for $h \ge 5$.

For k = 3, we have that

$$f(3, h) = 3^{-h+3.2}h^{1.2} < \frac{1}{9}$$

Moreover,

$$f(4, h) = \left(\frac{3}{8}\right)^h 8h^{1/2} < \frac{1}{16}.$$

For $k \ge 5$ and $h \ge 6$, we will prove

$$f(k,h) \leqslant 1/k^2 \tag{2.27}$$

as follows.

By the previous induction assumption in (1.2), it is sufficient to show that

$$\frac{1}{h} \left(\frac{(k-1)! + (k-1)! \, \alpha / \sqrt{k}}{k!} \right)^h (hk)^{3/2} \leqslant \frac{1}{k^2}. \tag{2.28}$$

We have that the left-hand side of (2.28) equals

$$\frac{h^{1/2}(\sqrt{k}+\alpha)^h}{k^{3(h-1)/2}}.$$

First we will show that, for $k \ge 5$ and $h \ge 8$,

$$\frac{h^{1/2}(\sqrt{k}+\alpha)^h}{k^{3(h-1)/2}} \leqslant \frac{1}{k^2}.$$
 (2.29)

Now (2.29) is true if and only if

$$\frac{(\ln h)/2 + h \ln(\sqrt{k} + \alpha)}{(3/2)h - (7/2)} - \ln k \le 0.$$
 (2.30)

The left-hand side of (2.30) is a decreasing function of h for $h \ge 6$. Thus it is less than

$$\frac{\ln 6 + 12 \ln \sqrt{k} + \alpha}{11} - \ln k. \tag{2.31}$$

Now (2.31) is a decreasing function of k and it is negative for k = 5 when $\alpha = 1$ and k = 6 when $\alpha = 2$. So (2.29) holds for $k \ge 5$, $k \ge 6$, after checking directly that it holds for f(8, 6), f(16, 6). Thus (2.9) holds for $k \ge 5$.

Now we have that

$$\sum_{\substack{kh=n\\k\neq 1,n\\k\neq \text{even}}} f(k,h) \leq \sum_{i=2}^{\infty} \frac{1}{i^2} + f\left(\frac{n}{2},2\right) + f\left(\frac{n}{4},4\right). \tag{2.32}$$

Finally, we discuss the last two terms on the right-hand side of (2.32). By the inductive hypothesis,

$$f\left(\frac{n}{2},2\right) \leqslant \frac{2^{1/2}(\sqrt{n/2}+\alpha)^2}{(n/2)^{3/2}}.$$

Since f(n/2, 2) is a decreasing function of n and $f(35, 2) \le 0.32082$ ($\alpha = 1$ if $n \ne 8$ or 16) it follows that

$$f(n/2, 2) \le 0.32082$$
 for $n \ge 72$. (2.33)

$$f\left(\frac{n}{4}, 4\right) = \frac{2(\sqrt{n/4} + 1)^4}{(n/4)^{4.5}} < 0.003393$$
 for $n \ge 72$. (2.34)

Thus the right-hand side of (2.13) < 0.645 + 0.32082 + 0.003393 < 1 for $n \ge 64$. We have shown that (1.2) holds provided we check it does for $n \le 63$.

This is true except with $\alpha = 1$ except for n = 8 and 16 and $\lfloor d_8/(7!) = 27/16$ and $d_{16}/(15!) = 2955/2048$ and so (1.1), (1.2) hold.

In particular

$$\lim_{n\to\infty}\frac{d_n}{(n-1)!}=1.$$

3. Two Examples

We have

$$d_{100}/99! = \frac{1,437,875,310,019,956,682,521,937,269,338,988,093}{1,407,374,883,553,280,000,000,000,000,000,000,000}$$
$$= 1.02167....$$

As the asymptotic ensures this quantity is less than 1.1 (but it is larger than 1.01).

Similarly,

$$d_{99}/98! = \frac{23,433,924,589,424,318,014,557,665,728}{23,454,932,070,382,151,157,711,285,129}$$
$$= 0.999104...$$

ACKNOWLEDGMENT

We thank Dr. C. Reutenauer (see also [4]) for bringing this question to our attention.

REFERENCES

- P. Cartier, Groupes formels associés aux anneaux de Witt, C.R. Acad. Sci. Paris 265 (1967), 49-52.
- 2. S. Lang, Algebra, 2nd ed., p. 352, Addison-Wesley, Reading, MA. 1984
- G. METROPOLIS AND G.-C. ROTA, Witt vectors and the algebra of necklaces, Adv. in Math. 50 (1983), 95-125.
- 4. C. REUTENAUER, Sur des fonctions symétriques reliés aux vecteurs de Witt, to appear.